Copied to
clipboard

G = C2xC23.84C23order 128 = 27

Direct product of C2 and C23.84C23

direct product, p-group, metabelian, nilpotent (class 2), monomial

Aliases: C2xC23.84C23, C24.652C23, C23.300C24, (C23xC4).70C22, C23.373(C4oD4), (C22xC4).500C23, C22.35(C42:2C2), C2.C42.487C22, C2.8(C2xC42:2C2), C22.180(C2xC4oD4), (C2xC2.C42).10C2, SmallGroup(128,1132)

Series: Derived Chief Lower central Upper central Jennings

C1C23 — C2xC23.84C23
C1C2C22C23C24C23xC4C2xC2.C42 — C2xC23.84C23
C1C23 — C2xC23.84C23
C1C24 — C2xC23.84C23
C1C23 — C2xC23.84C23

Generators and relations for C2xC23.84C23
 G = < a,b,c,d,e,f,g | a2=b2=c2=d2=1, e2=bcd, f2=cb=bc, g2=b, ab=ba, ac=ca, ad=da, ae=ea, af=fa, ag=ga, bd=db, fef-1=be=eb, bf=fb, bg=gb, cd=dc, geg-1=ce=ec, cf=fc, cg=gc, de=ed, gfg-1=df=fd, dg=gd >

Subgroups: 468 in 258 conjugacy classes, 132 normal (4 characteristic)
C1, C2, C4, C22, C2xC4, C23, C23, C22xC4, C22xC4, C24, C2.C42, C23xC4, C2xC2.C42, C23.84C23, C2xC23.84C23
Quotients: C1, C2, C22, C23, C4oD4, C24, C42:2C2, C2xC4oD4, C23.84C23, C2xC42:2C2, C2xC23.84C23

Smallest permutation representation of C2xC23.84C23
Regular action on 128 points
Generators in S128
(1 106)(2 107)(3 108)(4 105)(5 79)(6 80)(7 77)(8 78)(9 28)(10 25)(11 26)(12 27)(13 66)(14 67)(15 68)(16 65)(17 70)(18 71)(19 72)(20 69)(21 92)(22 89)(23 90)(24 91)(29 84)(30 81)(31 82)(32 83)(33 102)(34 103)(35 104)(36 101)(37 95)(38 96)(39 93)(40 94)(41 86)(42 87)(43 88)(44 85)(45 100)(46 97)(47 98)(48 99)(49 118)(50 119)(51 120)(52 117)(53 124)(54 121)(55 122)(56 123)(57 110)(58 111)(59 112)(60 109)(61 116)(62 113)(63 114)(64 115)(73 126)(74 127)(75 128)(76 125)
(1 36)(2 33)(3 34)(4 35)(5 125)(6 126)(7 127)(8 128)(9 13)(10 14)(11 15)(12 16)(17 81)(18 82)(19 83)(20 84)(21 85)(22 86)(23 87)(24 88)(25 67)(26 68)(27 65)(28 66)(29 69)(30 70)(31 71)(32 72)(37 98)(38 99)(39 100)(40 97)(41 89)(42 90)(43 91)(44 92)(45 93)(46 94)(47 95)(48 96)(49 56)(50 53)(51 54)(52 55)(57 64)(58 61)(59 62)(60 63)(73 80)(74 77)(75 78)(76 79)(101 106)(102 107)(103 108)(104 105)(109 114)(110 115)(111 116)(112 113)(117 122)(118 123)(119 124)(120 121)
(1 68)(2 65)(3 66)(4 67)(5 47)(6 48)(7 45)(8 46)(9 103)(10 104)(11 101)(12 102)(13 108)(14 105)(15 106)(16 107)(17 59)(18 60)(19 57)(20 58)(21 124)(22 121)(23 122)(24 123)(25 35)(26 36)(27 33)(28 34)(29 116)(30 113)(31 114)(32 115)(37 76)(38 73)(39 74)(40 75)(41 51)(42 52)(43 49)(44 50)(53 92)(54 89)(55 90)(56 91)(61 84)(62 81)(63 82)(64 83)(69 111)(70 112)(71 109)(72 110)(77 100)(78 97)(79 98)(80 99)(85 119)(86 120)(87 117)(88 118)(93 127)(94 128)(95 125)(96 126)
(1 28)(2 25)(3 26)(4 27)(5 93)(6 94)(7 95)(8 96)(9 106)(10 107)(11 108)(12 105)(13 101)(14 102)(15 103)(16 104)(17 64)(18 61)(19 62)(20 63)(21 117)(22 118)(23 119)(24 120)(29 109)(30 110)(31 111)(32 112)(33 67)(34 68)(35 65)(36 66)(37 77)(38 78)(39 79)(40 80)(41 56)(42 53)(43 54)(44 55)(45 125)(46 126)(47 127)(48 128)(49 89)(50 90)(51 91)(52 92)(57 81)(58 82)(59 83)(60 84)(69 114)(70 115)(71 116)(72 113)(73 97)(74 98)(75 99)(76 100)(85 122)(86 123)(87 124)(88 121)
(1 2 3 4)(5 6 7 8)(9 10 11 12)(13 14 15 16)(17 18 19 20)(21 22 23 24)(25 26 27 28)(29 30 31 32)(33 34 35 36)(37 38 39 40)(41 42 43 44)(45 46 47 48)(49 50 51 52)(53 54 55 56)(57 58 59 60)(61 62 63 64)(65 66 67 68)(69 70 71 72)(73 74 75 76)(77 78 79 80)(81 82 83 84)(85 86 87 88)(89 90 91 92)(93 94 95 96)(97 98 99 100)(101 102 103 104)(105 106 107 108)(109 110 111 112)(113 114 115 116)(117 118 119 120)(121 122 123 124)(125 126 127 128)
(1 85 26 124)(2 22 27 120)(3 87 28 122)(4 24 25 118)(5 61 95 20)(6 59 96 81)(7 63 93 18)(8 57 94 83)(9 55 108 42)(10 49 105 91)(11 53 106 44)(12 51 107 89)(13 52 103 90)(14 56 104 43)(15 50 101 92)(16 54 102 41)(17 126 62 48)(19 128 64 46)(21 68 119 36)(23 66 117 34)(29 76 111 98)(30 80 112 38)(31 74 109 100)(32 78 110 40)(33 86 65 121)(35 88 67 123)(37 69 79 116)(39 71 77 114)(45 82 127 60)(47 84 125 58)(70 73 113 99)(72 75 115 97)
(1 111 36 116)(2 70 33 30)(3 109 34 114)(4 72 35 32)(5 42 125 90)(6 49 126 56)(7 44 127 92)(8 51 128 54)(9 82 13 18)(10 64 14 57)(11 84 15 20)(12 62 16 59)(17 102 81 107)(19 104 83 105)(21 77 85 74)(22 97 86 40)(23 79 87 76)(24 99 88 38)(25 115 67 110)(26 29 68 69)(27 113 65 112)(28 31 66 71)(37 122 98 117)(39 124 100 119)(41 94 89 46)(43 96 91 48)(45 50 93 53)(47 52 95 55)(58 101 61 106)(60 103 63 108)(73 123 80 118)(75 121 78 120)

G:=sub<Sym(128)| (1,106)(2,107)(3,108)(4,105)(5,79)(6,80)(7,77)(8,78)(9,28)(10,25)(11,26)(12,27)(13,66)(14,67)(15,68)(16,65)(17,70)(18,71)(19,72)(20,69)(21,92)(22,89)(23,90)(24,91)(29,84)(30,81)(31,82)(32,83)(33,102)(34,103)(35,104)(36,101)(37,95)(38,96)(39,93)(40,94)(41,86)(42,87)(43,88)(44,85)(45,100)(46,97)(47,98)(48,99)(49,118)(50,119)(51,120)(52,117)(53,124)(54,121)(55,122)(56,123)(57,110)(58,111)(59,112)(60,109)(61,116)(62,113)(63,114)(64,115)(73,126)(74,127)(75,128)(76,125), (1,36)(2,33)(3,34)(4,35)(5,125)(6,126)(7,127)(8,128)(9,13)(10,14)(11,15)(12,16)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,67)(26,68)(27,65)(28,66)(29,69)(30,70)(31,71)(32,72)(37,98)(38,99)(39,100)(40,97)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(73,80)(74,77)(75,78)(76,79)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,68)(2,65)(3,66)(4,67)(5,47)(6,48)(7,45)(8,46)(9,103)(10,104)(11,101)(12,102)(13,108)(14,105)(15,106)(16,107)(17,59)(18,60)(19,57)(20,58)(21,124)(22,121)(23,122)(24,123)(25,35)(26,36)(27,33)(28,34)(29,116)(30,113)(31,114)(32,115)(37,76)(38,73)(39,74)(40,75)(41,51)(42,52)(43,49)(44,50)(53,92)(54,89)(55,90)(56,91)(61,84)(62,81)(63,82)(64,83)(69,111)(70,112)(71,109)(72,110)(77,100)(78,97)(79,98)(80,99)(85,119)(86,120)(87,117)(88,118)(93,127)(94,128)(95,125)(96,126), (1,28)(2,25)(3,26)(4,27)(5,93)(6,94)(7,95)(8,96)(9,106)(10,107)(11,108)(12,105)(13,101)(14,102)(15,103)(16,104)(17,64)(18,61)(19,62)(20,63)(21,117)(22,118)(23,119)(24,120)(29,109)(30,110)(31,111)(32,112)(33,67)(34,68)(35,65)(36,66)(37,77)(38,78)(39,79)(40,80)(41,56)(42,53)(43,54)(44,55)(45,125)(46,126)(47,127)(48,128)(49,89)(50,90)(51,91)(52,92)(57,81)(58,82)(59,83)(60,84)(69,114)(70,115)(71,116)(72,113)(73,97)(74,98)(75,99)(76,100)(85,122)(86,123)(87,124)(88,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,85,26,124)(2,22,27,120)(3,87,28,122)(4,24,25,118)(5,61,95,20)(6,59,96,81)(7,63,93,18)(8,57,94,83)(9,55,108,42)(10,49,105,91)(11,53,106,44)(12,51,107,89)(13,52,103,90)(14,56,104,43)(15,50,101,92)(16,54,102,41)(17,126,62,48)(19,128,64,46)(21,68,119,36)(23,66,117,34)(29,76,111,98)(30,80,112,38)(31,74,109,100)(32,78,110,40)(33,86,65,121)(35,88,67,123)(37,69,79,116)(39,71,77,114)(45,82,127,60)(47,84,125,58)(70,73,113,99)(72,75,115,97), (1,111,36,116)(2,70,33,30)(3,109,34,114)(4,72,35,32)(5,42,125,90)(6,49,126,56)(7,44,127,92)(8,51,128,54)(9,82,13,18)(10,64,14,57)(11,84,15,20)(12,62,16,59)(17,102,81,107)(19,104,83,105)(21,77,85,74)(22,97,86,40)(23,79,87,76)(24,99,88,38)(25,115,67,110)(26,29,68,69)(27,113,65,112)(28,31,66,71)(37,122,98,117)(39,124,100,119)(41,94,89,46)(43,96,91,48)(45,50,93,53)(47,52,95,55)(58,101,61,106)(60,103,63,108)(73,123,80,118)(75,121,78,120)>;

G:=Group( (1,106)(2,107)(3,108)(4,105)(5,79)(6,80)(7,77)(8,78)(9,28)(10,25)(11,26)(12,27)(13,66)(14,67)(15,68)(16,65)(17,70)(18,71)(19,72)(20,69)(21,92)(22,89)(23,90)(24,91)(29,84)(30,81)(31,82)(32,83)(33,102)(34,103)(35,104)(36,101)(37,95)(38,96)(39,93)(40,94)(41,86)(42,87)(43,88)(44,85)(45,100)(46,97)(47,98)(48,99)(49,118)(50,119)(51,120)(52,117)(53,124)(54,121)(55,122)(56,123)(57,110)(58,111)(59,112)(60,109)(61,116)(62,113)(63,114)(64,115)(73,126)(74,127)(75,128)(76,125), (1,36)(2,33)(3,34)(4,35)(5,125)(6,126)(7,127)(8,128)(9,13)(10,14)(11,15)(12,16)(17,81)(18,82)(19,83)(20,84)(21,85)(22,86)(23,87)(24,88)(25,67)(26,68)(27,65)(28,66)(29,69)(30,70)(31,71)(32,72)(37,98)(38,99)(39,100)(40,97)(41,89)(42,90)(43,91)(44,92)(45,93)(46,94)(47,95)(48,96)(49,56)(50,53)(51,54)(52,55)(57,64)(58,61)(59,62)(60,63)(73,80)(74,77)(75,78)(76,79)(101,106)(102,107)(103,108)(104,105)(109,114)(110,115)(111,116)(112,113)(117,122)(118,123)(119,124)(120,121), (1,68)(2,65)(3,66)(4,67)(5,47)(6,48)(7,45)(8,46)(9,103)(10,104)(11,101)(12,102)(13,108)(14,105)(15,106)(16,107)(17,59)(18,60)(19,57)(20,58)(21,124)(22,121)(23,122)(24,123)(25,35)(26,36)(27,33)(28,34)(29,116)(30,113)(31,114)(32,115)(37,76)(38,73)(39,74)(40,75)(41,51)(42,52)(43,49)(44,50)(53,92)(54,89)(55,90)(56,91)(61,84)(62,81)(63,82)(64,83)(69,111)(70,112)(71,109)(72,110)(77,100)(78,97)(79,98)(80,99)(85,119)(86,120)(87,117)(88,118)(93,127)(94,128)(95,125)(96,126), (1,28)(2,25)(3,26)(4,27)(5,93)(6,94)(7,95)(8,96)(9,106)(10,107)(11,108)(12,105)(13,101)(14,102)(15,103)(16,104)(17,64)(18,61)(19,62)(20,63)(21,117)(22,118)(23,119)(24,120)(29,109)(30,110)(31,111)(32,112)(33,67)(34,68)(35,65)(36,66)(37,77)(38,78)(39,79)(40,80)(41,56)(42,53)(43,54)(44,55)(45,125)(46,126)(47,127)(48,128)(49,89)(50,90)(51,91)(52,92)(57,81)(58,82)(59,83)(60,84)(69,114)(70,115)(71,116)(72,113)(73,97)(74,98)(75,99)(76,100)(85,122)(86,123)(87,124)(88,121), (1,2,3,4)(5,6,7,8)(9,10,11,12)(13,14,15,16)(17,18,19,20)(21,22,23,24)(25,26,27,28)(29,30,31,32)(33,34,35,36)(37,38,39,40)(41,42,43,44)(45,46,47,48)(49,50,51,52)(53,54,55,56)(57,58,59,60)(61,62,63,64)(65,66,67,68)(69,70,71,72)(73,74,75,76)(77,78,79,80)(81,82,83,84)(85,86,87,88)(89,90,91,92)(93,94,95,96)(97,98,99,100)(101,102,103,104)(105,106,107,108)(109,110,111,112)(113,114,115,116)(117,118,119,120)(121,122,123,124)(125,126,127,128), (1,85,26,124)(2,22,27,120)(3,87,28,122)(4,24,25,118)(5,61,95,20)(6,59,96,81)(7,63,93,18)(8,57,94,83)(9,55,108,42)(10,49,105,91)(11,53,106,44)(12,51,107,89)(13,52,103,90)(14,56,104,43)(15,50,101,92)(16,54,102,41)(17,126,62,48)(19,128,64,46)(21,68,119,36)(23,66,117,34)(29,76,111,98)(30,80,112,38)(31,74,109,100)(32,78,110,40)(33,86,65,121)(35,88,67,123)(37,69,79,116)(39,71,77,114)(45,82,127,60)(47,84,125,58)(70,73,113,99)(72,75,115,97), (1,111,36,116)(2,70,33,30)(3,109,34,114)(4,72,35,32)(5,42,125,90)(6,49,126,56)(7,44,127,92)(8,51,128,54)(9,82,13,18)(10,64,14,57)(11,84,15,20)(12,62,16,59)(17,102,81,107)(19,104,83,105)(21,77,85,74)(22,97,86,40)(23,79,87,76)(24,99,88,38)(25,115,67,110)(26,29,68,69)(27,113,65,112)(28,31,66,71)(37,122,98,117)(39,124,100,119)(41,94,89,46)(43,96,91,48)(45,50,93,53)(47,52,95,55)(58,101,61,106)(60,103,63,108)(73,123,80,118)(75,121,78,120) );

G=PermutationGroup([[(1,106),(2,107),(3,108),(4,105),(5,79),(6,80),(7,77),(8,78),(9,28),(10,25),(11,26),(12,27),(13,66),(14,67),(15,68),(16,65),(17,70),(18,71),(19,72),(20,69),(21,92),(22,89),(23,90),(24,91),(29,84),(30,81),(31,82),(32,83),(33,102),(34,103),(35,104),(36,101),(37,95),(38,96),(39,93),(40,94),(41,86),(42,87),(43,88),(44,85),(45,100),(46,97),(47,98),(48,99),(49,118),(50,119),(51,120),(52,117),(53,124),(54,121),(55,122),(56,123),(57,110),(58,111),(59,112),(60,109),(61,116),(62,113),(63,114),(64,115),(73,126),(74,127),(75,128),(76,125)], [(1,36),(2,33),(3,34),(4,35),(5,125),(6,126),(7,127),(8,128),(9,13),(10,14),(11,15),(12,16),(17,81),(18,82),(19,83),(20,84),(21,85),(22,86),(23,87),(24,88),(25,67),(26,68),(27,65),(28,66),(29,69),(30,70),(31,71),(32,72),(37,98),(38,99),(39,100),(40,97),(41,89),(42,90),(43,91),(44,92),(45,93),(46,94),(47,95),(48,96),(49,56),(50,53),(51,54),(52,55),(57,64),(58,61),(59,62),(60,63),(73,80),(74,77),(75,78),(76,79),(101,106),(102,107),(103,108),(104,105),(109,114),(110,115),(111,116),(112,113),(117,122),(118,123),(119,124),(120,121)], [(1,68),(2,65),(3,66),(4,67),(5,47),(6,48),(7,45),(8,46),(9,103),(10,104),(11,101),(12,102),(13,108),(14,105),(15,106),(16,107),(17,59),(18,60),(19,57),(20,58),(21,124),(22,121),(23,122),(24,123),(25,35),(26,36),(27,33),(28,34),(29,116),(30,113),(31,114),(32,115),(37,76),(38,73),(39,74),(40,75),(41,51),(42,52),(43,49),(44,50),(53,92),(54,89),(55,90),(56,91),(61,84),(62,81),(63,82),(64,83),(69,111),(70,112),(71,109),(72,110),(77,100),(78,97),(79,98),(80,99),(85,119),(86,120),(87,117),(88,118),(93,127),(94,128),(95,125),(96,126)], [(1,28),(2,25),(3,26),(4,27),(5,93),(6,94),(7,95),(8,96),(9,106),(10,107),(11,108),(12,105),(13,101),(14,102),(15,103),(16,104),(17,64),(18,61),(19,62),(20,63),(21,117),(22,118),(23,119),(24,120),(29,109),(30,110),(31,111),(32,112),(33,67),(34,68),(35,65),(36,66),(37,77),(38,78),(39,79),(40,80),(41,56),(42,53),(43,54),(44,55),(45,125),(46,126),(47,127),(48,128),(49,89),(50,90),(51,91),(52,92),(57,81),(58,82),(59,83),(60,84),(69,114),(70,115),(71,116),(72,113),(73,97),(74,98),(75,99),(76,100),(85,122),(86,123),(87,124),(88,121)], [(1,2,3,4),(5,6,7,8),(9,10,11,12),(13,14,15,16),(17,18,19,20),(21,22,23,24),(25,26,27,28),(29,30,31,32),(33,34,35,36),(37,38,39,40),(41,42,43,44),(45,46,47,48),(49,50,51,52),(53,54,55,56),(57,58,59,60),(61,62,63,64),(65,66,67,68),(69,70,71,72),(73,74,75,76),(77,78,79,80),(81,82,83,84),(85,86,87,88),(89,90,91,92),(93,94,95,96),(97,98,99,100),(101,102,103,104),(105,106,107,108),(109,110,111,112),(113,114,115,116),(117,118,119,120),(121,122,123,124),(125,126,127,128)], [(1,85,26,124),(2,22,27,120),(3,87,28,122),(4,24,25,118),(5,61,95,20),(6,59,96,81),(7,63,93,18),(8,57,94,83),(9,55,108,42),(10,49,105,91),(11,53,106,44),(12,51,107,89),(13,52,103,90),(14,56,104,43),(15,50,101,92),(16,54,102,41),(17,126,62,48),(19,128,64,46),(21,68,119,36),(23,66,117,34),(29,76,111,98),(30,80,112,38),(31,74,109,100),(32,78,110,40),(33,86,65,121),(35,88,67,123),(37,69,79,116),(39,71,77,114),(45,82,127,60),(47,84,125,58),(70,73,113,99),(72,75,115,97)], [(1,111,36,116),(2,70,33,30),(3,109,34,114),(4,72,35,32),(5,42,125,90),(6,49,126,56),(7,44,127,92),(8,51,128,54),(9,82,13,18),(10,64,14,57),(11,84,15,20),(12,62,16,59),(17,102,81,107),(19,104,83,105),(21,77,85,74),(22,97,86,40),(23,79,87,76),(24,99,88,38),(25,115,67,110),(26,29,68,69),(27,113,65,112),(28,31,66,71),(37,122,98,117),(39,124,100,119),(41,94,89,46),(43,96,91,48),(45,50,93,53),(47,52,95,55),(58,101,61,106),(60,103,63,108),(73,123,80,118),(75,121,78,120)]])

44 conjugacy classes

class 1 2A···2O4A···4AB
order12···24···4
size11···14···4

44 irreducible representations

dim1112
type+++
imageC1C2C2C4oD4
kernelC2xC23.84C23C2xC2.C42C23.84C23C23
# reps17828

Matrix representation of C2xC23.84C23 in GL8(F5)

10000000
01000000
00400000
00040000
00004000
00000400
00000010
00000001
,
10000000
01000000
00400000
00040000
00001000
00000100
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000040
00000004
,
40000000
04000000
00400000
00040000
00004000
00000400
00000010
00000001
,
02000000
30000000
00010000
00400000
00000300
00002000
00000014
00000004
,
01000000
40000000
00010000
00100000
00000400
00001000
00000023
00000043
,
40000000
01000000
00300000
00020000
00001000
00000400
00000041
00000031

G:=sub<GL(8,GF(5))| [1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4],[4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,1],[0,3,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,4,4],[0,4,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,0,2,4,0,0,0,0,0,0,3,3],[4,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,3,0,0,0,0,0,0,0,0,2,0,0,0,0,0,0,0,0,1,0,0,0,0,0,0,0,0,4,0,0,0,0,0,0,0,0,4,3,0,0,0,0,0,0,1,1] >;

C2xC23.84C23 in GAP, Magma, Sage, TeX

C_2\times C_2^3._{84}C_2^3
% in TeX

G:=Group("C2xC2^3.84C2^3");
// GroupNames label

G:=SmallGroup(128,1132);
// by ID

G=gap.SmallGroup(128,1132);
# by ID

G:=PCGroup([7,-2,2,2,2,-2,2,2,784,253,344,758,723,100]);
// Polycyclic

G:=Group<a,b,c,d,e,f,g|a^2=b^2=c^2=d^2=1,e^2=b*c*d,f^2=c*b=b*c,g^2=b,a*b=b*a,a*c=c*a,a*d=d*a,a*e=e*a,a*f=f*a,a*g=g*a,b*d=d*b,f*e*f^-1=b*e=e*b,b*f=f*b,b*g=g*b,c*d=d*c,g*e*g^-1=c*e=e*c,c*f=f*c,c*g=g*c,d*e=e*d,g*f*g^-1=d*f=f*d,d*g=g*d>;
// generators/relations

׿
x
:
Z
F
o
wr
Q
<